
AfU ooq-634
bST0-<2l^00<p.

Description and Worked

Example of STAGE

Sabrina Sestito

and Jodie Doman

APPROVED FOR PUBLIC RELEASE

DTIC QUALITY IKSFEGTSB 4

© Commonwealth of Australia

DEPARTMENT, OF DEFENCE

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

DISCLAIM NOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

COLOR PAGES WHICH DO NOT

REPRODUCE LEGIBLY ON BLACK

AND WHITE MICROFICHE.

Description and Worked Example of STAGE

Sabrina Sestito and Jodie Doman

Air Operations Division
Aeronautical and Maritime Research Laboratory

DSTO-GD-0092

ABSTRACT

This paper describes the key features of the Scenario Toolkit And Generation
Environment (STAGE) software. STAGE provides an environment for the
development of real-time tactical situations. It uses menus and additional pulldown
menus for easy entry of data and provides a powerful display capability including a
dynamic link to the positioning of entities on the display. STAGE supports user
written scripts, which are associated with individual platforms, to dictate the
behaviour of each entity. User written code, known as user modules, allow the user to
extend the capability provided by STAGE (by expanding) the scripting mechanisms,
replacing existing models and providing access to STAGE'S internal data structure.
Use of STAGE and a course of action for developing scenarios is described in this
paper, along with a worked example giving detailed listings of all data, profiles and
scripts required to run a simple scenario.

RELEASE LIMITATION

Approved for public release

DEPARTMENT OF DEFENCE
 ♦

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

19961217 056

Published by

DSTO Aeronautical and Maritime Research Laboratory
PO Box 4331
Melbourne Victoria 3001

Telephone: (03) 9626 8111
Fax: (03)9626 8999
© Commonwealth of Australia 1996
AR No. AR-009-m 6 34
April 1996

APPROVED FOR PUBLIC RELEASE

Description and Worked Example of STAGE

Executive Summary

This paper describes the key features of the Scenario Toolkit And Generation
Environment (STAGE) software. STAGE provides an environment for the
development of real-time tactical situations. It uses menus and additional pulldown
menus for easy entry of data and provides a powerful display capability including a
dynamic link to the positioning of entities on the display. STAGE supports user
written scripts, which are associated with individual platforms, to dictate the
behaviour of each entity. User written code, known as user modules, allows the user to
extend the capability provided by STAGE by expanding the scripting mechanisms,
replacing existing models and providing access to STAGE'S internal data structure.
Use of STAGE and a course of action for developing scenarios is described in this
paper, along with a worked example giving detailed listings of all data, profiles and
scripts required to run a simple scenario.

STAGE has several applications. It would be useful for simulating real combat
scenarios. In addition, it would be useful for evaluating tactics and weapons. Due to its
real-time interactivity and flexibility, STAGE would be very useful for training; this is
because a trainer could instantaneously and interactively change a situation and see
the effect this has on the trainee(s). Finally, STAGE could also be used to control
several simulators and other hardware; this is possible through its distributed
interactive simulation communication protocol.

Authors

Sabrina Sestito
Air Operations Division

Dr Sestito is a Research Scientist at the Aeronautical and
Maritime Research Laboratory (AMRL), Department of Defence,
in Melbourne, Australia. She completed her B.Sc. (Hons) in
Meteorology and Oceanography at the Flinders University of
South Australia in 1983 and a Postgraduate Diploma in
Computer Science at the University of Adelaide in 1984. She
started ivorking for AMRL, in Melbourne in 1985 in the
Operational Research Group. In 1988 she commenced her Ph.D. in
Computer Science at LaTrobe University, which she completed in
1991. Her Ph.D. was expanded and published as a book titled
"Automated Knowledge Aauisition". She is currently working in
the Air Operations Simulation Centre at AMRL. Her interests
include the use of Computer Graphics and Virtual Environments
for Simulation, and Artificial Intelligence. She is a member of the
IEEE Computer Society.

Jodie Doman
Air Operations Division

Ms. Jodie Doman is an Engineer at the Aeronautical and
Maritime Research Laboratory (AMRL), Department of Defence,
in Melbourne, Australia. Jodie started ivork at AMRL, Melbourne
for 11 months in 1991 as an industry based learning student. She
recommenced her employment there in the Air Operations
Simulation Centre at the beginning of 1995. She completed a
B.App.Sc. in Computing and Scientific Instrumentation at
Swinburne University in 1992 and is currently completing a
Master of Applied Science at the same university. Her interests
include the use of artificial neural nehuorks for problem solving
and amateur theatre.

DSTO-GD-0092

Contents

LIST OF ACRONYMS iii

1. INTRODUCTION 1

2. OVERVIEW 2

3. COMPONENTS 3

4. SCENARIO ORGANISATION 4

4.1 Global Level 4

4.2 Sensor and Weapon Profiles 6

4.3 Platforms 7

4.3.1 Platform Instances 7

4.3.2 Platform Profile 8
4.4 Weapon Vector Instance 9

5. SCRIPTS 10
5.1 Scripting Language 10
5.2 Pre-Defined Script Objects 11

6. USER MODULES 12

7. USING STAGE 14

8. BUILT-IN MODELS 15

9. WORKED EXAMPLE OF A STAGE SCENARIO 16
9.1 Scenario Details 16
9.2 Sensor Profiles 17

9.3 Weapons Profiles 18

9.4 Platform Profiles 18
9.5 Scripts 22

9.6 Platform Instances 24

10. RECAPITULATION 27

APPENDIX A SITUATION AWARENESS DISPLAY (SAD) DEPICTIONS OF THE
SCENARIO 29

DSTO-GD-0092

List of Acronyms

AAA Anti-Aircraft Artillery

dalt altitude variation

DE Database Editor

dhdg heading variation
DI Development Interface

DSTO Defence Science Technology Organisation

dv velocity variation
ESM Electronic Support Measures

ETA Estimated Time of Arrival

LST Landing Ship Tank
MCMV Mine Counter Measure Vessel

PK Probability of Kill
roc rate of climb
rod rate of dive
rot rate of turn
RPM Revolutions Per Minute

SAD Situation Awareness Display

SAM Surface-Air-Missile

SIM Simulation Engine
STAGE Scenario Toolkit And Generation Environment
vert spd vertical speed

m

DSTO-GD-0092

1. Introduction

This paper describes the key features of the Scenario Toolkit and Generation
Environment modeling tool known as STAGE. This tool provides an environment for
the development of real-time tactical situations. It uses menus with additional
pulldown menus for easy entry of data. Platforms and weapon vectors are the entities
which inhabit the synthetic environment. STAGE provides a powerful display
capability, known as the Situation Awareness Display (SAD), to show the evolution of
the scenario both during design and runtime. A dynamic link for the positioning of
entities on the display is also provided. Scripts, associated with individual platforms,
are user written and dictate the behaviour of each entity. User written code, known as
user modules, allow the user to extend the capability provided by STAGE by allowing
the user to expand the scripting mechanism, replace existing models and by providing
access to STAGE'S internal data structure. The flexibility of this tool is thus apparent.

STAGE has several applications. It would be useful for simulating real combat
scenarios. In addition, it would be useful for evaluating tactics and weapons. Due to its
real-time interactivity and flexibility, STAGE would be very useful for training; this is
because a trainer could instantaneously and interactively change a situation and see
the effect this has on the trainee(s). Finally, STAGE could also be used to control
several simulators and other hardware; this is possible through its distributed
interactive simulation communication protocol.

This paper is broken up into the following sections.

• Section 1 contains this brief introduction.

• An overview of STAGE is given in Section 2.

• Section 3 describes the main components comprising STAGE.

• The basis of STAGE'S scenario organisation is described in Section 4. Within this,
detailed descriptions of the platform and weapon vectors which inhabit the
environment are presented. Various necessary profiles, such as sensor and
weapon profiles, are also described.

• User written scripts and user modules are described in sections 5 and 6,
respectively. These mechanisms give STAGE a powerful means for a user to
interact and control every aspect of a scenario.

• Using STAGE is then discussed in section 7. The main options available to STAGE
through the initial window and a plan of action when developing a new scenario
are discussed.

• The models provided by STAGE are briefly described in Section 8.

• Section 9 presents a worked example. Instances of profiles and scripts are
provided.

• Section 10 provides a summary of the main features of STAGE. The potential uses
of STAGE are then also briefly discussed.

DSTO-GD-0092

2. Overview

The Scenario Toolkit and Generation Environment (STAGE), which was developed by
Virtual Prototype Incorporated (VPI), is a software package supporting the definition
and real-time execution of synthetic tactical environments. STAGE provides the user
with a graphical user interface to enter information into a tactical database. It does this
by providing a set of menus and windows to facilitate the creation of the tactical
database. The tactical environment is composed of both entities and environmental
influences. These components are all defined by various parameters. The tactical
database is used to generate a dynamic, interactive, complex and real-time tactical
environment. STAGE also provides a set of menus and windows to control and view
the data generated during the runtime simulation.

STAGE simulates the synthetic environment by using moving entities (such as planes
and missiles) which interact by tactical means (such as detection and engagement).
The moving entities, referred to as platforms, along with weapon vectors, inhabit the
synthetic environment. The type of platform (such as a F15) are defined by a platform
profile consisting of the type of platform, the physical, dynamic and acoustic profile of
the platform, the attached sensors and weapons, and its combat effectiveness. Some of
the types of platforms supported are fixed-wing aircraft, helicopters and submarines.
Weapon vectors are missiles and torpedos which inhabit the environment. A script is
attached to individual platforms and weapon vectors, it consists of a procedural
description of the actions to be carried out based on the tactical environment status.
Thus, it defines the behaviour of the various entities and actually extends the
capability of the platform beyond the input data entered. User modules provide the
user with the capability to integrate user-written simulation models into the
simulation environment, allowing the user to extend the capability of STAGE.
Therefore, through the use of scripts and user modules, the user is able to control
many aspects of the synthetic environment.

STAGE is a fully interactive, real-time tactical simulator. A useful aspect of this
interaction is available during program execution, where the scenario can be stopped
at any time and changes made. It can either be run with detailed models or another
model can be run and linked into STAGE. These and other features allow STAGE to
operate as a totally stand-alone environment generator or as a fully integrated
simulator for other applications.

DSTO-GD-0092

3. Components

In this section, the main components of STAGE are described. Included in this
discussion, is a description of the Situation Awareness Display (SAD) which provides
a crucial link between the scenario and the user.

There are three interacting components in STAGE. These are :

• database editor (DE);

• simulation engine (SIM); and

• development interface (DI).

The database editor (DE) features a structured user interface (with windows, icons,
menus and pointers) to manipulate entities and create scenarios. This database editor
is used to build and assemble the components of a scenario during the design phase.
Menus and pulldown displays provide an easy method for entering the components,
which inhabit the environment, into a tactical database. The simulation engine (SIM)
uses the tactical database to produce and simulate the synthetic environment. The
scenario is thus prepared in game preparation mode and downloaded to the
simulation engine for running. Game control and monitoring takes place using the
runtime model of the database editor; here, the scenario can be run, stopped and
returned to the initial conditions, frozen mid-scenario or resumed.

During runtime, the DE is used to visualise the evolution of the scenario's entities
within the synthetic environment. The simulation engine communicates with the
database editor in order to:

• get descriptions of the scenario and its entities;

• return data about the current state or the evolution of the scenario; and

• respond to the simulation flow control commands.

The SIM makes available, via a shared area, key descriptive and runtime state
information. This enables STAGE to operate as the central simulation in a set of co-
operating simulation processes.

The focal point of the Database Editor is the Situation Awareness Display. SAD
provides a god's eye view of the scenario and consists of a map of the gaming area
overlayed with symbology representing the scenario's entities and their trajectories. A
powerful feature of this display is that entities can be moved graphically. Thus, during
the execution of a scenario the location of any entity can be modified and its affect
gauged. For instance, any platform or weapon vector can be hooked and displayed in a
separate window and this hooked entity deleted, repositioned and commanded to
change speed, altitude and heading in real-time. It is also possible to dynamically
instantiate an entity in the scenario. This highlights the flexibility of this display.
Zooming and decluttering functions of SAD are also available to allow the user to
focus on particular areas of interest. Group editing capabilities are also provided by
STAGE to make multiple copies of individual entities, and to cut, copy and paste
groups of entities.

DSTO-GD-0092

The Development Interface (DI) allows one to extend the capabilities of STAGE
beyond those that are already present in the SIM, DE and tactical database. For
example, the user can :

• add functionality to the SIM;

• replace simulation modules;

• extend the functionality of the scripting mechanism via user written code; and

• add user-written communication modules to the SIM to link it with local or
remote simulation processes.

The DI can also add new fields to the existing profiles, add new profiles and add new
relationships between profiles.

4. Scenario Organisation

The scenario in STAGE is composed of entities and environmental components, each
of which are parameterized. Simulation models are attached to the entities and
components generate the behaviour. The entities and environmental components are
assembled hierarchically to form a complete scenario. A scenario is the aggregate unit
which is simulated to generate a synthetic environment. This modular approach
supports the independent, incremental and re-useable creation of the scenario's
building blocks. The following class organisation characterises the STAGE generated
synthetic environment. Figure 1, reproduced from the STAGE User Manual, lists most
of the important components. Figure 2 arranges these components hierarchically.

Default settings will be used for absent gaming area, and atmospheric and
oceanographic conditions. The atmospheric and oceanographic profiles are affected at
two levels. Firstly, the global level allows an overall atmospheric attenuation factor to
be specified for a given scenario. This attenuation factor acts upon all simulated
sensors by linearly degrading their detection capability. Secondly, or at a local level,
the user is allowed to specify an attenuation factor for each type of active sensor.

4.1 Global Level

The geographical location and extent of the scenario is known as the gaming area. The
atmospheric and oceanographic profiles specify the characteristics of the
environmental volume above and below the sea level, respectively. The effects of these
profiles is specified at a global level. An overall attenuation factor can be specified for
a given scenario - this factor acts upon all simulated sensors by linearly degrading
their detection capability.

DSTO-GD-0092

A SCENARIO consists of:
a GAMING AREA
an associated ATMOSPHERIC and OCEANOGRAPHIC PROFILE

a table of ENTITIES

an ENTITY can be either:

a PLATFORM INSTANCE or

a VECTOR WEAPON INSTANCE

a PLATFORM INSTANCE consists of:

a name
an associated PLATFORM PROFILE

INITIAL CONDITIONS

an associated BEHAVIOUR SCRIPT
FORMATION data
a BASIC TRAJECTORY for navigation

a WEAPON VECTOR INSTANCE consists of:

a name
an associated WEAPON PROFILE
targeting information

an associated BEHAVIOUR SCRIPT

a PLATFORM PROFILE consists of:

a name

a PHYSICAL PROFILE

a DYNAMIC PROFILE

an ACOUSTIC PROFILE

a table of ATTACHED SENSORS

a table of ATTACHED WEAPONS
COUNTER-MEASURES against VECTOR WEAPONS

DAMAGE IMPACT results

an ATTACHED SENSOR consists of:

a name

an associated SENSOR PROFILE

an ATTACHED WEAPON consists of:

a name

an associated WEAPON PROFILE

a count of the number of weapons available.

Figure 1. A list of the components in STAGE.

DSTO-GD-0092

SCENARIO

GAMING AREA ENTITIES

PLATFORM
INSTANCE

PLATFORM
PROFILE

ATMOSPHERIC OCEANOGRAPHIC
PROFILE PROFILE

VECTOR WEAPON
INSTANCE

ATTACHED
SENSORS

ATTACHED
WEAPONS

Figure 2: A hierarchy of the components in STAGE.

4.2 Sensor and Weapon Profiles

Sensor and weapon profiles define the characteristics of the sensors and weapons
possessed by an entity. They are linked to an entity through the profile name. These
profiles are defined separately from the entities because more than one entity can have
the same sensors and/or weapons.

The sensor profiles define the capabilities of the sensors. The following characteristics
can be defined:

• the type of sensor - eg radar, sonar, passive sonar, infrared, visual, or ESM;

• sensor characteristics - such as minimum and maximum sensor elevation,
maximum power and scan rate; and

• sensor curve which specifies, for a given target cross-section factor, the sensor's
probability of detection versus the target range. This is entered graphically.

The performance of all sensors is linearly degraded via the atmospheric and
oceanographic attenuation factors specified at the global level

There are two types of weapons supported by STAGE; point and vector weapons. A
point weapon is simulated statistically, whereas a weapon vector inhabits the
simulated environment, along with platforms. A gun is an example of a point weapon.

DSTO-GD-0092

This weapon is characterised by a firing rate with its lethality expressed as a
probability of kill versus launch (firing) ranges to target. A successful hit is determined
by whether the volumes of the weapon and target have intersected. Weapon vectors,
on the other hand, are items such as torpedos and missiles. The motion of these
weapons through the scenario is defined through dynamic models.

The weapon profile lists the parameters describing a weapon. The following
characteristics can be defined:

• type - eg torpedo, tracking missile, cruise missile or gun;

• a bitmap for displaying the item on the Situation Awareness Display;

• a profile for torpedo and missiles which includes the following:
• dimension (width, length, height, weight);

• cross-sector factor in the 4 sensor spectrums (of radar, sonar, infrared and
visual);

• dynamic maximums, such as maximum turn rate and acceleration; and

• dynamic responses such as time interval necessary to reach maximum
acceleration and time interval necessary to reach maximum turn rate.

• firing rate for a gun; and

• probability of kill which specifies the probability of kill versus the range between
the weapon and its target at launch time (entered graphically).

4.3 Platforms

Platforms, along with weapon vectors, are the entities that inhabit the synthetic
environment. In this section, the characteristics for defining a platform are discussed.

4.3.1 Platform Instances

Platform instances define the individual characteristics of a particular platform. These
characteristics are described below.

• Initial conditions - this include aspects such as colour identification and initial
speed, heading and altitude.

• Behaviour script - described in the scripting language and consists of procedural
description of actions to be carried out by the platform based on the status of the
tactical environment. This script consists of the ability to change the platform's
speed, heading, altitude and turn on/off any of the platform's systems (eg sensors
and counter-measures). A script can also scan the list of detected entities and
incoming weapons and select a prime opponent.

• Formation data - this indicates whether this platform is a master or slave.

• Trajectory - a series of waypoints that the platform follows. When the platform
reaches the end, the platform may stop, deactivate, become invisible, destroy
itself, continue, loop back or repeat a portion of trajectory.

DSTO-GD-0092

4.3.2 Platform Profile

Platform profile specifies the characteristics and capabilities of the particular type of
platform. These components contain definitions of:

• type and sub-type;

• physical, dynamic, acoustic profiles;

• counter measures;

• damage impact; and

• attached sensors and weapons.

Types

The platform types supported in STAGE are:

• fixed wing - fighter, marine patrol, bomber, transport, propeller;

• helicopter - attack and search;

• submarine - diesel and nuclear;

• surface - patrol, aircraft carrier, frigate, merchant, destroyer, fishing, LST (landing
ship tank), MCMV (mine counter measure vessel), command, cruiser;

• land - tank, truck, SAM (surface-air-missile), AAA (anti-aircraft artillery), walking
personnel, bicycle, motorcycle, automobile; and

• site - radar, headquarters, fire unit.

The type of the platform is used by the simulation model to control certain aspects of
the platform's simulated behaviour. For example, ships and planes do not bank in the
same direction when they turn.

Physical

This profile defines how the platform is 'seen' by other entities for sensor detection,
collision detection and weapon scoring. This is broken up into 2 parts :

• physical dimension of the platform; and

• platform's dimension in the visual, radar, sonar and infra-red spectrum.

Dynamic

The dynamic profile is simulated via a 5 degree of freedom model. Changes to current
speed, heading and altitude are made through scripts or user modules.

Acoustic

Surface and submarine platforms can have these acoustic profiles; they define the
acoustic emissions of the platform.

Counter-Measures

An entity's combat effectiveness is defined in terms of the platform's overall ability to
defend itself against incoming weapon vectors. It is specified as a probability of
defence versus launch range of the incoming weapon function. There are two

DSTO-GD-0092

functions of this type available, one for missiles and another for torpedoes. A
platform's counter measures must be activated via a script or a user module. Entities
sustain damage and reduce their combat effectiveness as a result of a weapon impact.
The following levels are possible:

• no damage;

• loss of systems;

• loss of mobility; and

• destruction.

Platforms also have an overall cross-section factor (similar to all sensor spectrums) that
linearly affects their detectability by sensors.

Note that no counter measures of the jammer, flare or chaff type are supported.
Indirect effect can be simulated using the combat effectiveness mechanisms of the
platforms.

Damage Impact

As an entity is damaged in a simulation, the degree of damage impact to the entity can
be controlled. This can include, loss of weapons, loss of sensors, loss of mobility and
complete destruction occurring when the entity's damage reaches a particular level.

Attached Sensors

Each attached sensor has a name and an associated sensor profile. All sensor profiles
are defined elsewhere and include aspects such as type, sensor elevation and
maximum power. These profiles are linked to a particular platform through the profile
name. Both active and passive sensors are supported:

• active - visual, radar, sonar and infrared; and

• passive - ESM and passive radar.

Attached Weapons

Each attached weapon has a name, an associated weapon profile and a count of the
number of the weapons available. Each weapon profile (as the sensor profile) is
defined elsewhere and is linked here by the type of weapon chosen. This profile
includes type of weapon (eg torpedo, gun) and dynamic models.

4.4 Weapon Vector Instance

Weapon vectors inhabit the simulated environment, along with platforms. A weapon
vector instance consists of a name, an associated weapon profile and targeting
information. Weapon profiles are defined elsewhere and are linked here by type.

DSTO-GD-0092

5. Scripts

The scripting mechanism provided by STAGE is a powerful method of controlling and
dictating the behaviour of the entities within the tactical environment. This mechanism
enables the user to attach scripts to individual platforms and weapon vectors in a
scenario. For instance, a platform's behaviour can be scripted allowing the platform to
react to environmental and tactical conditions by performing navigation, engagement
or other actions. The core functionality of scripts consists of the ability to:

• change an entity's speed, heading and altitude;

• turn on/off any of the entity's systems (ie sensors and countermeasures);

• scan the list of detected platforms and incoming weapons, and examine selected
information about them; and

• select a prime opponent, obtain additional information about it and engage it by
firing any of the entity's weapons at it.

5.1 Scripting Language

Each script is expressed in a scripting language which consists of a procedural
description of the actions to be carried out based on the tactical environment status.
The platform's script is a text file, entered by the user which contains 3 broad
categories of statements:

• conditions - these statements evaluate the characteristics of the tactical
environment;

• actions - these statements specify the desired changes in the platform's behaviour;
and

• control - these statements bind conditions and actions together by allowing the
user to:

• trigger actions based on conditions;

• select among alternatives;

• repeat specified statements for a fixed or variable number of times; and

• provide temporary storage for some results.

The scripting mechanism is build around a set of pre-defined constants, functions and
objects. Some of the options available are:

type declarations, such as int (integer), float;

mathematical operators such as +, -, and *;

logical operators such as AND and OR;

mathematical functions such as sin, cos;

formatted output functions, such as report_flo (print a float);

conversion factors, such as RAD_TO_DEG (radians to degrees); and

control structures which are similar to C syntax, such as if-endif and while-do
statements.

10

DSTO-GD-0092

An interesting construct available in the script language is a time statement to execute
a particular statement at a specified time.

Each script requires the following three keywords:

• INITIALIZATION-SECTION.

• REACTION-CONTROL-SECTION.

• END-SCRIPT.

The statements listed after the initialization are executed once before the execution of
the scenario. The statements listed after the control section are executed periodically.
Section 4 of the STAGE User manual describe the Scripting language in detail.

5.2 Pre-Defined Script Objects

In the scripting language, objects are used to bind or consider the tactical simulation.
These objects are paralleled within the tactical scenario. For instance, there are objects
relating to platforms and weapons. These objects can have three types of components
or members:

• variables which can be read - read-only object members;

• variables which can be set - read-write object members; and

• actions which can be performed - object member functions.

There are seven (7) built-in objects provided by STAGE. These provide access to the
information of the platform owning the script, plus any other information it can have
access to. Each object has data members and functions associated with them. These
objects are briefly described below.

Entity - this object allows direct access to the information of the platform owning the
script. The identification and dynamic status of the platform can be accessed. The
entity can be instructed to change its navigation parameters. This object has:

• 17 members or parameters (eg name, actual-x-position, etc); and

• 1 function which forces the platform to change its trajectory.

Systems - this object allows access to the classes of systems (eg sensors) on board the
platform owning the script. There are:

• 8 members (eg radars-active, pas-sonar-active, etc); and

• 2 functions for activating and deactivating systems.

Track - this object allows access to other entities within the scenario. However, to be
accessible, the entity must be detected by the platform owning the script, or be a
missile or torpedo whose target is the platform owning the script. Through this object,
track id and dynamic status can be accessed. This object has:

• 15 members - (eg count, range); and

• 2 functions which allows the script to cycle through the tracks which are visible.

11

DSTO-GD-0092

Opponent - selecting an entity to be the prime opponent of the platform owning the
script (need not to be detected beforehand) is the purpose of this object. It has:

• 14 members - (eg name, range); and

• 1 function which assigns an entity to be an opponent.

Weapon - this fifth object allows the platform owning the script to fire one of its gun or
launch one of its missiles or torpedo at its opponent. It has:

• no members; and

• 3 functions for determining the number of weapons available, firing named
weapon for specified number of seconds and launching a missile/ torpedo,
respectively.

Script - this object allows the platform owning the script to access elapsed time of its
script becoming active, to deactivate its own script and to activate and deactivate
another platform's script. It has:

• 1 member which accesses elapsed time; and

• 2 functions for activating and deactivating a named platform's script.

Data-link - this final predefined object allows multiple scripts to share data in a named
networks. Each platform, however, can be a member of only one network at a time. It
has:

• 1 member which states the name of the currently joined network; and

• 8 functions for creating a network, joining a network, assigning integer, float and
strings to appropriate buffers in the named network, and retrieving integer, float
and string from the named network.

6. User Modules

Much of the behaviour of an entity can be controlled through the scripts associated
with the platforms. However, STAGE has an extra capability which highlights its true
flexibility and versatility. STAGE provides a Developer Interface (DI) which allows a
user to extend the capability of STAGE beyond those already built in.

With this development interface, a user can modify the baseline configuration of
STAGE to incorporate new models and functions. The DI allows the user, through user
written user modules, to:

• extend the simulation - by adding simulation models or interfaces to external
software;

• extend the script language - achieved by adding new constants, functions and
objects (defined by members and functions); and

• accessing simulation data - by allowing access to internal data structures within
the simulation engine.

12

DSTO-GD-0092

Thus, these user modules can be used to customise the behaviour of any platform and
weapon in the scenario. Besides adding functionality, user modules can be used to add
to or modify the functionality of single or multiple entities. Selected models can be
overridden by user module code. To achieve this, user modules install replacement
code for the key built in simulation functions for the selected entities. Note that, as
expected, if one replaces a built in model, the new one must generate, at the minimum,
the same data that the old one did.

The key built-in simulation functions which can be overridden for platforms and
weapons are, the calculation of an entity's:

local atmospheric conditions;

local oceanographic conditions;

dynamics;

navigation;

position keeping;

relative position keeping information;

acoustic generation (platform only);

sensor simulation (platform only);

weapon scoring;

collision detection; and

gun firing simulation (platform only).

User modules must contain the following three sections:

INIT - the statements within this section are executed at scenario startup;

CONTROL - these statements describe the flow of control of this entity. Describing
how the entity should work when the simulation is run, stopped, or frozen; and

• STEADY-STATE - these statements or code are carried out in steady-state mode of
execution. They are invoked periodically based on the execution rate.

DI allows the end user to integrate external models and functions as external processes
communicating with STAGE through the standard UNIX shared arena. These external
modules can represent existing simulation systems, data analysis functions or
gateways to other application software.

13

DSTO-GD-0092

7. Using STAGE

When developing a scenario in STAGE, it is useful to follow the procedure listed in
Figure 3. This course of action is top-down in that generic information, ie profiles, are
developed first.

Consider the overall scenario to be modelled in terms of interactions and moving
entities. From this, determine :

• the sensors which will be in the scenario ==> fill out a SENSOR PROFILE for each
sensor;

• the weapons which will be in the scenario ==> fill out a WEAPON PROFILE for
each weapon;

• the generic entities (eg aircraft, landsites) which will be in the scenario ==> fill out
a PLATFORM PROFILE for each type of generic entity;

• the generic tactics, if any, which need to be applied to the entities ==> describe in
words, the appropriate TACTICS (ie procedures) and the conditions of when these
tactics should be employed. (For example, after aircraft A and B fire at each other
do they continue to the next waypoint or do they re-evaluate their fuel condition,
for instance, and possibly head home);

• the specific intances of each entity (which will include initial heading, speed,
location, etc.) which inhabit the scenario ==> fill out the PLATFORM information
for each entity in the scenario; and

• if STAGE does not provide the required information, consider developing specific
User Modules.

Figure 3: Course of action for developing STAGE scenarios.

The main options which allow the user to perform everything that is required to create
a scenario in STAGE are listed below:

• atmospheric, oceanographic, acoustic - brings up a menu for entering various
parameters relating to the chosen option;

• platform - type, physical, dynamic, defence missile, defence torpedo, damage
impact, sensor, weapon and acoustic information can be entered under this option.
The defence missile and torpedo have a probability of defence against
missile/torpedo window. A platform's probability of successful defence against a
missile/torpedo versus ranges at which the missile/torpedo was launched is
specified; this can also be entered as a graph. A maximum of 5 sensors (with
unique names) and associated profiles are allowed. For the weapons, a maximum
of 8 unique names and associated profiles are allowed;

• scenario - this option allows general parameters in the gaming area to be specified
as well as the creation of platform instances within it. Saving and retrieving profile

14

DSTO-GD-0092

data from disks along with the ability to add, delete or view platform instances is
also allowed;

sensor - the characteristics defining the various sensors are defined here. This
includes the type of sensor (eg radar, infrared) and power settings. These profiles
(like the weapon profile) are defined separately from the entities inhabiting the
environment, because more than one entity can have the same sensor (or weapon);
and

weapon - besides a weapon profile, the PK can be entered under this option. The
PK specifies the probability of kill versus ranges between a weapon and its target
at launch time. This can be entered as a graph. The weapon profile includes
specifying the type of weapon (eg torpedoes, guns) and dynamic models. Note
above comment about the positioning of this option.

8. Built-in Models

Several built in models are provided in STAGE. As stated above, these models can be
replaced and new models added. A brief description of the function of these models
follows:

evaluates the local atmospheric and oceanographic conditions surrounding a
platform and /or a weapon, respectively;

calculates the range of each platform to the nearest coast and/ or obstacle and
detects collision;

calculates the relative elevation, range, bearing and absolute bearing between each
platform;

compares the position of each platform;

calculates the requested speed, altitude and ground track of a platform in order to
follow its trajectory or manoeuvre;

calculates actual position, speed, altitude, heading, etc. of a platform in order to
follow the dynamic envelope of a fixed-wing, helicopter, ship or submarine;

evaluates the probability of defence of a platform in the occurrence of a missile or
torpedo hit;

evaluates whether a platform has been destroyed after a missile or torpedo hit;

evaluates the probability of detection of:

• emitting sensors (radar, sonar, or visual);

• a platform above sea level (radar, infrared); and

• underwater platform.;

activates a gun for a specified time against a target;

calculates the amount of bullets fired by an active gun and evaluates if its target
has been destroyed;

activates the launch of a missile/torpedo against a target;

15

DSTO-GD-0092

calculates the requested speed, altitude and ground track of a missile/torpedo in
order to guide it toward its assigned target;

calculates the actual position, speed, altitude, heading etc of a missile/ torpedo in
order to follow its dynamic envelope;

compares the position of a missile/torpedo against the position of its target; and

evaluates if a weapon has been destroyed after a missile or torpedo hit.

9. Worked Example of a STAGE Scenario

This section describes a worked example of a scenario constructed in STAGE. All
profiles, instances and scripts are described. Basically, the aim of the scenario was for
two aircraft to attack two land sites. Please note that this example is to demonstrate
STAGE'S capabilities and that the scenario, profiles and scripts are not meant to be
representative of a real situation.

9.1 Scenario Details

This scenario consisted of four entities of two fixed wing aircraft (r_fighter_01 and
r_fighter_02) and two land sites (b_land_01 and b_land_02). Each of the fighters were
equipped with four cruise missiles and radar sensors. Each of the land sites were
equipped with six surface-to-air tracking missiles, as well as radar and visual sensors.
The trajectory of each aircraft consisted of waypoints which enabled the aircraft to fly
directly over the two land sites. The weapons launch of each aircraft in the scenario
was controlled by user-written scripts.

In order to appreciate the scenario's real-time progression, Appendix A contains
Figures Al to A5 which show the scenario at different times. These figures, which are a
screen dump of the Situation Awareness Display (SAD), are:

• Figure Al: At time 0:00 - initial placement of entities;

• Figure A2 : At time 1:00 - both aircraft r_fighter_01and r_fighter_02 have fired
missiles at the land base b_land_02. The land base, b_land_0,2 has fired two
missiles, one at each aircraft. Note in this figure that the missiles are now entities
in the scenario, having their own names;

• Figure A3 : At time 2:00 - land base b_land_02 is destroyed by the cruise missile
(cruise_mis);

• Figure A4: At time 3:30 - both aircraft have fired missiles at the land base
b_land_03. Land base b_land_03 has fired two missiles, one at each aircraft; and

• Figure A5 : At time 4:00 - final state of the scenario. The land base b_land_03 has
been destroyed and the two aircraft have escaped from the missiles that were
following.

16

DSTO-GD-0092

The profiles, instances and scripts for this scenario are described in the following
sections.

9.2 Sensor Prof iles

Each sensor attached to an entity (either platform or weapon) is described in a sensor
profile. This profile contains the generic information pertaining to the sensor, as
provided by STAGE; note that these profiles are not realistic and are only meant for
demonstration. In this scenario, there was a need for four sensor profiles. The first
three are associated with the aircraft, while the fourth one is associated with the land
site. The sensor profiles used in this scenario are:

• demo_radar as listed in Table 1;

• demo_visual as listed in Table 2;

• demo_infrared as listed in Table 3; and

• demo_sam as listed in Table 4.

Table 1: The demo_radar sensor profile in the scenario

Type Sensor_Radar

Categories Detected

Attributes Detected
All

All
Earth Radius Factor

emission power
1.000

500

Detection Envelope

min elevation
max elevation
min azimuth
max azimuth

-89.954°
89.954 °
-180°
180°

scanning rate

scanning # of hits
6RPM

3

Table 2: The demo_visual sensor profile.

Type _ Sensor_Visual

Earth Radius Factor 1.000
Detection Envelope

min elevation -89.954 °
max elevation 89.954 °
min azimuth -180°
max azimuth 180°

17

DSTO-GD-0092

Table 3 : The demo_infrared sensor profile.

Type Sensor_Infrared

Earth Radius Factor 1.000

Detection Envelope

min elevation -89.954 °

max elevation 89.954 °

min azimuth -180°

max azimuth 180°

Table 4: The samjsensor sensor profile.

Type Sensor_Radar

Categories Detected All

Attributes Detected All

Earth Radius Factor

emission power

1.000

500

Detection Envelope

min elevation 0 °
max elevation 90 °
min azimuth -180 °
max azimuth 180 °

scanning rate
scanning # of hits

35RPM
1

9.3 Weapons Profiles

In this scenario, there was a need for two weapon profiles. One is associated with the
aircraft and the other is associated with the landsite. Recall once again that the
numbers in these profiles are not meant to be real. These profiles are:

• GF_MSL_CRU as listed in Table 5; and

• demo missile as listed in Table 6.

9.4 Platform Profiles

In this scenario, only two platform profiles were required. These relate a generic
fighter and the demo-sam profiles, which relate to the aircraft and land sites,
respectively. The numbers within the profiles are meant to be representative only; they
are not real numbers. The fighter profile is listed in Table 7, while Table 8 contains the
demo-sam profile. Note that the sensors and weapons defined above are linked into
the entities through these profiles; both attached sensors and weapons are associated
via the associated profiles.

18

DSTO-GD-0092

Table 5 : The GF_MSL_CRU weapons -profile STAGE.

Type Vector Weapon Type Cruising_Weapon

max range 100 km

Physical Characteristics

Dimensions Cross Section Factor

length 20 m radar 10

height lm sonar 10

width lm visual 10

mass 52 kg infrared 10

Dynamic Maximums

Maximums Responses

min speed Om/s dv to max ace 25 m/s
max speed 500 m/s time to max ace 5s

acceleration 20 m/s2 dhdg to max rot 1.146 °
deceleration 20 m/s2 time to max rot 0.5 s

turn rate 44.691 °/s max pitch rate 44.691 °/s
roll 89.954 ° max roll rate 17.762 °/s

altitude 10000 m dalt to max rot 500 m
climb rate 200 m/s dalt to max rod 500 m
dive rate 200 m/s dalt to max vert spd 0m

19

DSTO-GD-0092

Table 6: The demo-missile weapons profile

Type Vector Weapon Type Tracking_Weapon

max range 35 km

Physical Characteristics

Dimensions Cross Section Factor

length 20 m radar 10
height lm sonar 10
width lm visual 10
mass ^_^52kg__ infrared 10

Dynamic Maximums
Maximums Responses

min speed Om/s dv to max ace 25 m/s
max speed 500 m/s time to max ace 5s

acceleration 20 m/s2 dhdg to max rot 1.146 °
deceleration 20 m/s2 time to max rot 0.5 s

turn rate 44.691 °/s max pitch rate 44.691 °/s
roll 89.954 ° max roll rate 17.762 °/s

altitude 10000 m dalt to max rot 500 m
climb rate 200 m/s dalt to max rod 500 m
dive rate 200 m/s dalt to max vert spd 0m

Sensor Name Sensor Profile

ir demo_infra_red
sam_sen sam_sensor

20

DSTO-GD-0092

Table 7: The fighter platform profile.

Type wing Sub type fighter

Physical Characteristics

Dimensions Cross Section Factor

length 17 m radar 125
height 6m sonar 0
width 11m visual 125
mass 5277 kg infrared 0

Dynamic Maximums

Maximums Responses

min speed Om/s dv to max ace 25 m/s
max speed 1000 m/s time to max ace 5s
acceleration 20 m/s2 dhdg to max rot 40.001 °
deceleration 20 m/s2 time to max rot 2s

turn rate 20°/s max pitch rate 20°/s
roll 89.954 ° max roll rate 20 7 s

altitude 40000 m dalt to max rot 1000 m
climb rate 200 m/s dalt to max rod 1000 m
dive rate 200 m/s dalt to max vert spd 0m

Weapon Name Weapon Profile Sensor Name Sensor Profile
crusie_mis GF_MSL_CRU (x4) radar demo_radar

21

DSTO-GD-0092

Table 8 : The demo-sam -platform -profile.

Type land Sub type SAM

Physical Characteristics

Dimensions Cross Section Factor

length 20 m radar 100

height 10 m sonar 100

width 10 m visual 100

mass 5277 kg infrared 100

Dynamic Maximums

Maximums Responses

min speed Om/s dv to max ace 25 m/s
max speed 15.433 m/s time to max ace 5s
acceleration 20 m/s2 dhdg to max rot 179.909 °

deceleration 20 m/s2 time to max rot 2s
turn rate 44.691 °/s max pitch rate 0°/s

roll 89.954 ° max roll rate 0°/s
altitude 10000 m dalt to max rot 0m

climb rate Om/s dalt to max rod 0m
dive rate Om/s dalt to max vert spd 0m

Weapon Name Weapon Profile Sensor Name Sensor Profile

sam_missile demo_missile (x 6) sam_radar demo_radar
sam_visual demo_visual

9.5 Scripts

The actions of each of the entities in this scenario, were controlled by written scripts.
These scripts activated the platform's sensors, detected other platforms in the gaming
area, and launched weapons at opponent platforms when specific conditions were
met. The two fighter aircraft were both controlled by the fighter script and the two
land sites were both controlled by the Surface to Air Missile (SAM) script.

The fighter script (listed in Figure 9) controls the actions of the two fighter aircraft in
the scenario. The initialisation section of the script activates the radar sensors on the
platform. The reaction control section of the script detects other platforms in the
gaming area that are seen by the sensors of the this platform and determines what
action to take. If the detect platform is hostile and close enough for the weapons to be
effective (in this case 50 km), the platform is targeted and a missile is launched
against this target. Once the platform has launched missiles at both land sites, the

22

DSTO-GD-0092

script changes the platforms heading and speed to remove it from the gaming area (0°
heading, speed of 250 m/s).

The SAM script, listed in Figure 10, controls the actions of the two land sites in the
scenario. The initialization section of the script activates the radar and visual sensors
on the platform. The reaction control section of the script detects other platforms in the
gaming area and determines action to be taken against them. If the detected platform
is a fixed wing entity and hostile and within effective range of the missiles (35 km), the
platform is targeted and a missile launched against it. Only one missile is launched at
each target.

INITIALIZATION_SECTION

systems.activate(radar_sensors); # activate the radar sensors
int fired_at_track = -1; # initialization of variables
int fired_at_target_l = -1;
int fired_at_target_2 = -1;

REACTION_CONTROL_SECTION

fired_at_track = FALSE;
track.cycle_on(detected_platforms);
while (track.next() > 0) do

if ((track.range <= 50000) and (track.ident = hostile)) then
if (fired_at_target_l = -1) then

fired_at_target_l = track.index;
fired_at_track = TRUE;

endi f;
if ((fired_at_target_l != track.index) and

(fired_at_target_2 = -1)) then
fired_at_target_2 = track.index;
fired_at_track = TRUE;

endi f;
if (fired_at_track = TRUE) then

opponent.assign(track.index);
weapon.launch(cruising_missile,"crusie_mis");

endi f;
endi f;

endwhile;

if ((fired_at_target_2 != -1) and
(entity.actual_ground_track != 0)) then

entity.requested_ground_track = 0;
entity.requested_speed =250;

endi f;
END SCRIPT

Figure 9 : Fighter script used in scenario

INITIALIZATION SECTION

23

DSTO-GD-0092

systems.activate(radar_sensors); # activate radar sensors on
the platform

systems.activate(visual_sensors); # activate visual sensors on
the platform

int fired_at_track = -1;
int fired_at_target_l = -1;
int fired_at_target_2 = -1;

REACTION_CONTROL_SECTION

fired_at_track = FALSE;
track.cycle_on(detected_platforms);
while (track.next() > 0) do

if ((track.range <= 35000) and (track.ident = hostile) and
(track.type - fixed_wing)) then

target found
if (fired_at_target_l = -1) then
fired_at_target_l = track.index;
fired_at_track = TRUE;

endi f;
if (fired_at_target_l != track.index) and

(fired_at_target_2 = -1) then
fired_at_target_2 = track.index;
fired_at_track = TRUE;

endi f;
if (fired_at_track = TRUE) then
opponent.assign(track.index);
weapon.launch(tracking_missile,"sam_missile");

endi f;
endi f;

endwhile;
END SCRIPT

Figure 10: The SAM script used in the scenario.

9.6 Platform Instances

Each entity in a scenario is an instance of a platform profile. In this demonstration
scenario, there are four entities, two instances of the fighter platform profile, and two
instances of the demo_sam platform profile. Each instance of a profile has the
characteristics inherent in that profile: physical and dynamic characteristics, sensor
cross sections, sensors and weapons. However, the force colour (blue for friendly, red
for hostile and white for neutral), initial conditions, scripts and movement paths are all
unique to an instance. Listed in Tables 9 to 12 is the platform instance information for
each entity in the scenario; this information contains the initial conditions of the 4
entities.

24

DSTO-GD-0092

Table 9: Instance Information for aircraft entity "rfighter_0V

Platform Name r_fighter_01

Profile fighter

Color red
Activate Time 00:00:00

Script fighter_script
Script Active yes
Initial
Position: Latitude N49:46:34.5

Position: Longitude W001:00:19.0
Speed 200 m/s
Heading 180°
Altitude 500 m

Trajectory 1 2 3

ETA 00:03:00 00:04:00 00:05:00
Position: Latitude N48:50:11.4 N48:40:00.0 N49:10:31.0
Position: Longitude W001:00:04.1 W001:20:00.0 W001:36:25.9
Altitude 1000 m 1000 m 1000 m
Wait Time 00:00:00 00:00:00 00:00:00

25

DSTO-GD-0092

Table 10: Instance information for aircraft entity "r_fighter_02".

Platform Name r_fighter_02

Profile fighter

Color red

Activate Time 00:00:00
Script fighter_script
Script Active yes
Initial

Position: Latitude N49:49:45.2
Position: Longitude W001:00:00.9
Speed 200 m/s
Heading -170°
Altitude 500 m

Trajectory 1 2

ETA 00:02:30 00:04:00
Position: Latitude N49:02:57.4 N48:39:56.8
Position: Longitude W001:04:21.1 W001:20:12.7
Altitude 1000 m 1000 m
Wait Time 00:00:00 00:00:00

Table 11: Instance Information for land base entity "bj.and._02".

Platform Name b_land_02
Profile demo_sam
Color blue
Activate Time 00:00:00
Script SAM_script
Script Active yes
Initial

Position: Latitude N48:58:39.1
Position: Longitude W001:03:19.3
Speed Om/s
Heading 0°
Altitude 63.00 m

26

DSTO-GD-0092

Table 22: Instance information for land base entity "b_land_03"'.

Platform Name b_land_03
Profile demo_sam
Color blue
Activate Time 00:00:00
Script SAM_script
Script Active yes
Initial

Position: Latitude N48:40:00.0
Position: Longitude W001:20:11.3
Speed Om/s
Heading 0°
Altitude 71.00 m

10. Recapitulation

This paper has described the key features of the modeling tool known as STAGE.
STAGE provides an environment for the development of real-time tactical situations. It
uses menus and pulldown menus for easy entry of data. It has a powerful display
(SAD) capability which has a dynamic link to the positioning of entities on the display.
Hooked entities can be repositioned and instantiated during the running of a
simulation. Platforms (eg aircraft, ships and land vehicles) and weapon vectors
(missiles and torpedos) are the entities which inhabit the synthetic environment. These
entities were described in Section 4 with their main features highlighted. STAGE
provides a scripting mechanism which associates a script with individual entities
(platforms or weapons). This script is used to control the behaviour of the entity
(Section 5). User modules, described in Section 6, give the user the capacity to extend
the capability provided by STAGE by allowing the user to extend the scripting
mechanism, replace existing models and providing access to STAGE'S internal data
structures. The flexibility of this tool is thus apparent. Using STAGE was described in
Section 7, while Section 8 briefly described the built in models provided by STAGE. A
worked example of STAGE was provided in Section 9, where examples of profiles,
instances and scripts were given.

27

DSTO-GD-0092

Appendix A
Situation Awareness Display (SAD) Depictions of the

Scenario

29

DSTO-GD-0092

30

DSTO-GD-0092

mm,

H

$mm

mm
Uli

^"^■•';»v.."'.--.i.

SÄ
-.,,,:. ..■.;.;■■.■(■ !, vw

■.:■-■.:•■?■■-■V'".; •■:■'•;■'"■■.•>" •.'■.-- V ■;.■;■■■:■'

iiipii I

n-jr-
Ifljfe

■ •v"; ?!

.ya:;

Mi n:

m

Figure Al. At time 0:00

31

DSTO-GD-0092

Ü!

gum

■ri. ,< '■

m

.-'•j':,:'.'>Li-,Vi;i>i-'v:-.J:-;' ÄPS
tipp

i» «l

P8t

IP
■•'■/■'

m u

m
iiiÄS&i^'lA::

?<#iä PÜl
»

muHMum^i^M^B^d^

IP

 ipr**

i'Mäü
SKgl

;;pif!,
Si«

i#3i;
jjpV'j&ä':!,

Sf

AM'

■■•• ; ••■.-;

Figure Al. At time 1:00

32

DSTO-GD-0092

■ff

Sgpä

«B8

«»SB
m

titlflt

Figure A3. At time 2:00

33

DSTO-GD-0092

£«1 sal
mi&sma

W&W^ss&m*,

fall

llilft
Hi

SUB

ä$xiü?»;i$i>ynte«.

liiÄililiPll' ftlÄ

iiiMiiöS^

Figure A4. At time 3:30

34

DSTO-GD-0092

»mm ffiiF' x in "irr- ■i i -'- •--' v:
tittis MM

■HUHMIM
llttl mm;

 wmm

«1

 liibillligii
Mi

SS
?Äfe

ililliiiliiPli
""" i* * mm
lllill i^ä* 81

liifiPilltSta
IpMiiiliiiiiiii

liiiiiilpjijiiii!
.r.

iffii

NnSBKBIfi IN

■■■",:

•i.iii^:äi£i}iÄ!

1?Ü'. ...XWlii,

jj^j:eta*(fe**j.oi

■ü': ^>

W m

m

T..,-.-.!,..:..,.
ill

lift

.all

If «^
IP

IÜÄ

Figure A5. At time 4:00

35

Description and Worked Example of STAGE

Sabrina Sestito
and

Jodie Doman

AUSTRALIA

DEFENCE ORGANISATION

Defence Science and Technology Organisation

Chief Defence Scientist I

FAS Science Policy f shared copy

AS Science Corporate Management J
Counsellor Defence Science, London (Doc Data Sheet only)
Counsellor Defence Science, Washington
Scientific Adviser to Thailand MRD (Doc Data Sheet only)
Senior Defence Scientific Adviser/Scientific Adviser Policy and Command (shared

copy)
Navy Scientific Adviser (3 copies of Doc Data Sheet and 1 copy of Distribution list)
Scientific Adviser - Army
Air Force Scientific Adviser
Director Trials
Director, Electronics and Surveillance Research Laboratory
Director, Aeronautical and Maritime Research Laboratory

Air Operations Division:
Chief of Division
Research Leader: B. Feik
Task Manager: J. Harvey, M. Mason
Authors: Sabrina Sestito, Jodie Doman

P. Ryan, MOD
D. Fogg, ITD
J. Coleby, LSOD
C. Meline, EWD
G. O'Conner, WSD

G. Lawrie AOD, Salisbury

DSTO Library
Library Fishermens Bend
Library Maribyrnong
Main Library DSTOS (2 copies)
Library, MOD, Pyrmont (2 copies)
Defence Science and Technology Organisation Salisbury, Research Library (6 copies)

Defence Central
OIC TRS, Defence Central Library
Officer in Charge, Document Exchange Centre (DEC), 1 copy

DEC requires the following copies of public release reports to meet exchange
agreements under their management:

*US Defence Technical Information Centre, 2 copies
*UK Defence Research Information Centre, 2 copies
"Canada Defence Scientific Information Service
*NZ Defence Information Centre
National Library of Australia
Library, Defence Intelligence Organisation, 1 copy
Library, Defence Signals Directorate (Doc Data Sheet only)

Army
Director General Force Development (Land) (Doc Data Sheet only)
ABCA Office, G-l-34, Russell Offices, Canberra, 4 copies
SO (Science), HQ1 Division, Milpo, Enoggera, Qld 4057 (Doc Data Sheet)
NAPOC QWG Engineer NBCD c/- DENGRS-A, HQ Engineer Centre Liverpool

Military Area, NSW 2174 (Doc Data Sheet)

Navy
Director General Force Development (Sea),
SO (Science), Director of Naval Warfare, Maritime Headquarters Annex, Garden

Island, NSW 2000.

UNIVERSITIES AND COLLEGES
Australian Defence Force Academy Library
Senior Librarian, Hargrave Library, Monash University

OTHER ORGANISATIONS
NASA (Canberra)
AGPS

ABSTRACTING AND INFORMATION ORGANISATIONS
INSPEC: Acquisitions Section Institution of Electrical Engineers
Library, Chemical Abstracts Reference Service
Engineering Societies Library, US
American Society for Metals
Documents Librarian, The Center for Research Libraries, US

INFORMATION EXCHANGE AGREEMENT PARTNERS
Acquisitions Unit, Science Reference and Information Service, UK
Library - Exchange Desk, National Institute of Standards and Technology, US

SPARES (10 copies)

Total 73 copies

Page classification: UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION
DOCUMENT CONTROL DATA 1. PRIVACY MARKING/CAVEAT (OF

DOCUMENT)

2. TITLE

Description and Worked Example of STAGE

3. SECURITY CLASSIFICATION (FOR UNCLASSIFIED REPORTS
THAT ARE LIMITED RELEASE USE (L) NEXT TO DOCUMENT
CLASSIFICATION)

Document (U)
Title (U)
Abstract (U)

4. AUTHOR(S)

Sabrina Sestito & Jodie Doman

5. CORPORATE AUTHOR

Aeronautical and Maritime Research Laboratory
PO Box 4331
Melbourne Vic 3001

6a. DSTO NUMBER
DSTO-GD-0092

6b. AR NUMBER
AR-009-«* 654

6c. TYPE OF REPORT
General Document

7. DOCUMENT DATE
April 1996

8. FILE NUMBER
Ml /8 /924

9. TASK NUMBER

13. DOWNGRADING/DELIMITING INSTRUCTIONS

10. TASK SPONSOR 11. NO. OF PAGES
39

12. NO. OF
REFERENCES

14. RELEASE AUTHORITY

Chief, Air Operations Division

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT

Approved for public release

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE CENTRE, DIS NETWORK OFFICE,
DEFT OF DEFENCE, CAMPBELL PARK OFFICES, CANBERRA ACT 2600
16. DELIBERATE ANNOUNCEMENT

No limitations

17. CASUAL ANNOUNCEMENT Yes
18. DEFTEST DESCRIPTORS

Computer Modelling Simulation STAGE Scenario Toolkit And Generation Environment War Games

19. ABSTRACT

This paper describes the key features of the Scenario Toolkit And Generation Environment (STAGE) software. STAGE provides
an environment for the development of real-time tactical situations. It uses menus and additional pulldown menus for easy
entry of data and provides a powerful display capability including a dynamic link to the positioning of entities on the display.
STAGE supports user written scripts, which are associated with individual platforms, to dictate the behaviour of each entity.
User written code, known as user modules, allow the user to extend the capability provided by STAGE (by expanding) the
scripting mechanisms, replacing existing models and providing access to STAGE'S internal data structure. Use of STAGE and a
course of action for developing scenarios is described in this paper, along with a worked example giving detailed listings of all
data, profiles and scripts required to run a simple scenario.

Page classification: UNCLASSIFIED

